A reader radiates a 1" to 20" electrical field around itself. Cards use a simple LC circuit. When a card is presented to the reader, the reader's electrical field excites a coil in the card. The coil charges a capacitor and in turn powers an integrated circuit. The integrated circuit outputs the card number to the coil, which transmits it to the reader.
Most card readers are highly portable and versatile in their ability to read more than one type of memory card. The most common types of memory cards are Secure Digital (SD), microSD, SDHC, microSDHC, CompactFlash (CF), Memory Stick (MS), MS Duo, Mini SD, and MMC. Before buying a reader, make sure it's compatible with the memory card you are using. 

A card reader is a data input device that reads data from a card-shaped storage medium. The first were punched card readers, which read the paper or cardboard punched cards that were used during the first several decades of the computer industry to store information and programs for computer systems. Modern card readers are electronic devices that can read plastic cards embedded with either a barcode, magnetic strip, computer chip or another storage medium.
In the 1-to-many mode a user presents biometric data such as a fingerprint or retina scan and the reader then compares the live scan to all the templates stored in the memory. This method is preferred by most end-users, because it eliminates the need to carry ID cards or use PINs. On the other hand, this method is slower, because the reader may have to perform thousands of comparison operations until it finds the match. An important technical characteristic of a 1-to-many reader is the number of comparisons that can be performed in one second, which is considered the maximum time that users can wait at a door without noticing a delay. Currently most 1-to-many readers are capable of performing 2,000–3,000 matching operations per second.
There are several forms of biometric identification employed in access control: fingerprint, hand geometry, iris, Voice Recognition, and facial recognition. Biometric technology has been promoted for its ability to significantly increase the security level of systems. Proponents claim that the technology eliminates such problems as lost, stolen or loaned ID cards and forgotten PINs.[citation needed]

Kasamba is another site where you are able to connect through a real-time chat platform 24/7 or do a reading through an email. With email services, you send out a set of questions for them to look over before you receive a detailed, thorough response shortly afterwards. You can find everything from experts in online mediums, tarot readers, love and relationships, astrologers, fortune telling, clairvoyants, and everything in the middle.

If you've maxed out the memory on your camera, action cam, or smartphone, then there's a good chance you've invested in a memory card. Just one catch -- your laptop might not have a compatible port to speak with your memory card. That's where a card reader comes in. These handy go-between devices transmit data between a memory card and your computer. Let's answer some common questions about memory card readers.
Biometric templates may be stored in the memory of readers, limiting the number of users by the reader memory size (there are reader models that have been manufactured with a storage capacity of up to 50,000 templates). User templates may also be stored in the memory of the smart card, thereby removing all limits to the number of system users (finger-only identification is not possible with this technology), or a central server PC can act as the template host. For systems where a central server is employed, known as "server-based verification", readers first read the biometric data of the user and then forward it to the main computer for processing. Server-based systems support a large number of users but are dependent on the reliability of the central server, as well as communication lines.
Magnetic stripe technology, usually called mag-stripe, is so named because of the stripe of magnetic oxide tape that is laminated on a card. There are three tracks of data on the magnetic stripe. Typically the data on each of the tracks follows a specific encoding standard, but it is possible to encode any format on any track. A mag-stripe card is cheap compared to other card technologies and is easy to program. The magnetic stripe holds more data than a barcode can in the same space. While a mag-stripe is more difficult to generate than a bar code, the technology for reading and encoding data on a mag-stripe is widespread and easy to acquire. Magnetic stripe technology is also susceptible to misreads, card wear, and data corruption. These cards are also susceptible to some forms of skimming where external devices are placed over the reader to intercept the data read.